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Abstract: We study the thermodynamics of QCD in the limit 
of a large number of colors. It is argued that in this limit 
there is an order parameter for confinement., which is the energy 
density itself. We show that at a first order confinement- 
deconfinement phase transition, the ratio of the latent heat of 
the phase transition to the energy density of matter in the 
hadronic phase is infinite. We explicitly study the t' Hooft 
model of two dimensional QCD. It is shown that that at any 
finite temperature, the thermodynamic potential is not 
computable in perturbation theory, and that the high temperature 
limit of the thermodynamic potential is infinite in the limit of 
zero interaction strength. We also demonstrate how the Feynman 
graphs for the thermodynamic potential may be resummed to 
produce the same contribution as that from a resonance gas of 
hadrons, and show that the thermodynamic potential which is 
nominally of order N is in fact of order 1. We argue that at an 
infinite temperature, T - (No) l/2 , where o is the string 
tension, the system may become a deconfined gas of quarks, but 
that there need be no phase transition at any finite 
temperature. 
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Section 1. Introduction 

The physics of finite temperature and baryon number density 
phase transitions has been the subject of much recent numerical 
and analytical (1) studies. Much qualitative information has been 
abstracted from this analysis, but many fundamental questions 
still lack a satisfactory theoretical understanding. For 
example, it is not known whether fermions destroy the 
confinement-deconfinement phase transition of Yang-Mills theory 
in the absence of fermions, although the most recent Monte-Carlo 
computations lend numerical support to the thesis that the phase 
transition is not destroyed!2-4) The relation between'the chiral 
restoration phase transition and the confinement-deconfinement 
is not understood, although the most recent Monte-Carlo data 

(5) suggest that these transitions are one and the same. The latent 
heat of the phase transition is measured and is large when 
expressed in terms of the energy density of the matter below the 
phase transition!6-7) There is at least an order of magnitude 

jump, and for practical purposes, the energy density and 
pressure jump from essentially zero to values typical of an 
ideal quark-gluon gas at the phase transition. 

Another problem which is poorly understood is the 
reliability of perturbation theory for the computation of 
physical quantities at finite temperature, Linde showed that 
the thermodynamic potential may not be computed in perturbation 
theory beyond a certain fixed order in a weak 
expansion!8) 

coupling 
In four dimensions, this order is g5 for the 

thermodynamic potential. The breakdown of a perturbation 
expansion is signalled by infrared singularities. It is widely 
believed that the thermodynamic potential is reliably estimated 
up to this order, and the uncertainties in higher orders are 
small at high temperatures where the coupling strength is weak. 
The nature of the thermodynamic potential when these infrared 
singularities are properly accounted for is not yet fully 
understood. 

In an attempt to throw some light on these problems, we have 
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9 considered QCD in the large N limit , In this limit, some 
qualitative features of the numerical Monte-Carlo simulations 
'are easily understood. As we shall soon see, bulk quantities 
such as the thermodynamic potential itself provide an order 
parameter for the confinement-deconfinement phase transition. 
In the deconfined and confined phases of the system, the 
thermodynamic potential is of order N2 and of order one 
respectively. If the confinement-deconfinement phase transition 
is first order, the latent heat of the phase transition is 
infinite, when expressed as a ratio to the energy density below 
the phase transition, so that the transition is strongly first 
order. If the transition is second order, in a finite 
temperature interval above the transition, the energy density 
changes by an infinite amount compared to the energy density 
below the transition, and so the transition is in this sense 
strongly second order. At the phase transition, the large N 
expansion breaks down. 

In an attempt to glean more insight into the structure of 
QCD in large N, we have studied QCD in large N in two space-time 
dimensions, that is the t' Hooft model. In this model, we shall 
show that for any finite temprature, quarks are always confined 
into bound hadronic states, 
(Nd'*, 

but at an infinite temperature, T - 
where 0 is the string tension, 

deconfined. 
the systTT2may become 

In the high temperature limit, (No) l/2 >> T >> o , 
the thermodynamic potential may not be computed in perturbation 
theory and is divergent in the limit d + 0. This non- 
analyticity of the weak coupling expansion is a consequence of 
infrared divergences, and violates the naive expectation of 
asymptotically free perturbation theory that the thermodynamical 
potential should be computable in a systematic weak coupling 
expansion. 

We show in detail how in the confining phase, the 
thermodynamic potential for the theory expressed in terms of 
bound hadronic states arises from Feynman diagrams expressed in 
terms of quarks and gluons. We prove an interesting theorem, 
which may be useful in other contexts, which shows that if the 
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thermodynamic potential is projected into a color singlet 
sector, the momentum integrations corresponding to relative 
momenta of quarks in bound state wavefunctions may be directly 
converted from summations over Matsubara frequencies to 
continuous Euclidian integrations. Under weak assumptions about 
the nature of the bound state wavefunctions, these continuous 
integrations may be Wick rotated into Minkowski space, and the 
Feynman diagrams may be expressed in terms of Minkowski space 
wavefunctions. This theorem makes possible the relation between 
quark-gluon Feynman diagrams and a sum over hadronic resonances 
for the thermodynamic potential. 

In the summary, we finally discuss how corrections to the 
large N limit may affect our conclusions. ;le also attempt to 
isolate the peculiarities of our conclusions which arise from 
studying two dimensions rather than four. 
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Section 2: General Features of Thermodynamics in Large N 

The most obvious consequence of confinement is that not all 
the degrees of freedom of Yang-Mills theory are manifest in the 
set of physically accessible states. For example, there are N2-1 

colored and 1 singlet state associated with two fermions in the 
fundamental representation of SU(N). Only the singlet state is 
realized in nature, as a consequence of confinement. In the 
large N limit', the number of inaccessible colored states 
approaches infinity relative to the number of singlet states. 

In a finite temperature and baryon number density system, 

this simple observation has far reaching and amusing 
consequences lo-". (Although many of the results that we shall 
discuss in this section have already been discussed in Ref.10, 
we include them here for the sake of completeness). At high 
temperatures, if there is a confinement-deconfinement phase 
transition, the number of degrees of freedom of the system must 
change by an infinite amount. The entropy, pressure, and energy 
density at some finite temperature above the confinement- 
deconfinement temperature must be infinite compared to that 
below this temperature. If the phase transition is first order, 
the latent heat is in this sense infinite, and if the transition 
is second order, the transition is in this sense infinitely 
strong second order. These bulk quantities themselves therefore 
play the role of order parmaters, and the concept of a 
confinement- deconfinement phase transition is well defined. 

The sense in which the latent heat of the confinement- 
deconfinement phase transition becomes infinite may be 
understood by considering the thermodynamic potential in the 
deconfined phase at very high temperatures. At such 
temperatures, asymptotically free perturbation theory suggests 
that the thermodynamic potential is given by the two diagrams 
shown in Fig. 1. These diagrams give ideal gas contributions 
for N2 -1 gluons and NfN quarks, where Nf is the number of quark 
flavors, 
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a - { 2x(N2-1) + 4x(7/8)xNfN } T4 (1) 

For any finite temperature T, the thermodynamic potential is 
infinite as N + -. Below the phase transition, the system is 
described by a color singlet hadronic gas, and the thermodynamic 
potential is therefore of order one as N + -. 

We therefore see that the confinement-deconfinement phase 
transition might generate an infinite change in the bulk 
properties of the system. In reaching this conclusion, we have 
implicitly assumed that this phase transition occurs at finite 
temperature even in the infinite N limit. If this is not the 
case, then the arguments presented above clearly do not apply 
since at an infinite temperature, the bulk properties may become 
infinite without a singularity. Let us assume for example that 
in the infinite N limit there is either no deconfining phase 
transition or that the transition occurs at a temperature T - Np 
(P>O). Asymptotically free perturbation theory may be a 
numerically accurate approximation at large temperatures in 
these finite N theories, but the temperature at which this 
approximation becomes good approaches infinity as N + -. As a 
result, when we consider the N + - limit of these theories, 
asymptotically free perturbation theory is never a valid 
approximation at any finite temperature, and there need not be 
any infinite change in the thermodynamic potential of the system 
at a finite temperature. 

In the two dimensional t' Hooft model which we shall study 
either the system never becomes deconfined, or deconfinement is 
realized only at infinite temperature. The asymptotically free 
perturbation theory is never valid at any finite temperature, at 
least in the large N limit. This is probably not the case for 
four dimensional theories. In four dimensions, asymptotically 
free perturbation theory may be a valid approximation to bulk 
quantities such as the thermodynamic potential at some finite 
temperature. This should be true even in the large N limit for 
T >> A where A is a scale factor which characterizes confinement 
scales. Since at low temperatures, the system is a confined 
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hadron gas, there must be a phase transition at some finite 
temperature. 

The difference between two and four dimensions is that the 
infrared behaviour of phase space is much more singular in two 
dimensions. For example, the first order correction to the 
thermodynamic potential, shown in Fig. 2, is linearly 
divergent. To see this, observe that the infrared singular 
contribution to this graph occurs for zero Matsubara frequency 
in the gluon line. The remaining momentum integration diverges 
as dk/k2, that is linearly. In four dimensions, the first non- 
controllable infrared divergences occur in order g5. 

The infrared limit may be a little more severe for QCD at 
large N than for finite N. At finite N, the infrared 
singularity in Fig. 2 at zero gluon momentum may be tempered 
somewhat by the insertion of fermion bubbles, as shown in Fig. 
3, and a temperature dependent gluon mass might be generated. 
If this is the case, then infrared singularities may not be a 
problem at least until some higher order of perturbation 
expansion. The severe infrared singular structure of large N 
QCD makes the infrared finite ideal gas contribution, Fig. 1 

and Eq. 1, invalid at any finite temperature. This is a little 
surprising, since two dimensional QCD is a theory with a 
dimensional coupling constant, and conventional wisdom would say 
that at high temperatures the contributions to the thermodynamic 
potential arise from high energy quarks whose interactions are 
insignificant. The surprise is that the infrared interactions 
are what are in fact dominating the thermodynamic potential at 
any finite temperature. The breakdown of perturbation theory 
may be seen by explicitly computing the thermodynamic potential. 
The thermodynamic potential may be represented as a sum over 
meson bound states of quark-antiquark pairs. To leading order 
in large N, these mesons do not interact, so the sum is over 
non-interacting mesons. 

Q = - ~~ T I g ln{l-e -B[k2+m2]1'2 1 I (2) 
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At high temperatures, the dominant contribution to the sum 
over states in Eq. 2 is for large mass mesons. Since there are 
a large number of these mesons, and the thermal factor does not 
greatly suppress the contribution of mesons with mass a < T, the 
sum over these large mass mesons is expected to give extra 
factors of T in n relative to the contribution of any single low 
mass meson. To see in detail how it works, we note that at 
large temperatures, the meson masses are 

2 mi = kias (3) 

where CX~ = Ng2/4n is the dimensional coefficient which 
characterizes the string tension, and K is a constant of order 
one. The quark masses do not enter this relation for the large 
mass states which we consider. Up to a numerical constant, as 
is the string tension, CL~ - 0. 

At large masses, the sum over i in Eq. 2 may be replaced by 
an integral. We find 

l/2 
R = - T Idi -$ ln{l-e -B[k2+Kasi] 

(4) 

where a is a constant of order one. 
The expression for the thermodynamic potential given in Eq. 

4 is appropriate for the high temperature limit of an ideal gas 
in four dimensions, not two. The extra powers of T may be 
understood to arise from the large number of states which 
contribute to the thermodynamic potential at large T. Also, for 
the contribution of a free quark gas, we expect a factor of N in 
the thermodynamic potential, which is absent. Notice that the 
thermodynamic potential is divergent in the limit us + 0. This 
singularity reflects the breakdown of perturbation theory in the 
large N limit. In general, the thermodynamic potential is 
singular in the limit that CL~ + 0. In this limit, the sum over 
resonances is not damped by the thermal factor, and the large i 
contributions to the sum lead to a divergence. Put another way, 
by scaling, large T corresponds to small as, and we already have 
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seen that the high temperature limit is singular. 
This structure of the thermodynamic potential suggests that 

an unconfined quark-gluon plasma might be produced at infinite 
temperature at infinite N, or at some temperature T - JNas for 
finite but large N. Recall that the thermodynamic potential for 
an ideal gas of quarks in two dimensions is 

n - NT 2 
(5) 

Gluons do not contribute to the thermodynamic potential in 
two dimensions since there are no dynamical propagating gluons. 
(One degree of freedom is gauge and the other is constrained by 
Gauss's law.) Equations 4-5 for the thermodynamic potential 
agree when T - JNas. Also, at this large temperature, the effect 
of interactions may become significant. We argued before that 
in calculating the partition function, the effects of 
interactions could be ignored, since they are suppressed by one 
power of N in the large N limit. As the temperature becomes 
large, the typical mass of a particle, which gives contribution 
to the partition function becomes of order T. Since the number 
of particles with mass(T is of order T2/as, the density of 
particles grow with temperature T2/as times faster than that for 
a gas of free particles of a single type. Due to the rapid 
growth of number density, the effect of multi-meson interactions 
becomes significant at a temperature T-JNas, when the extra power 
of T2/, s compensates for the power of N -1 in the interaction 
strength. 

We can now understand how a confinement-deconfinement phase 
transition might be dynamically realized at a finite temperature 
in four space-time dimensions. In four dimensions, the number 
of states which contribute to the partition function grow 
exponentially, not quadratically, as the temperature increases. 
In some circumstances, this exponential growth may result in an 
accumulation of mesons contributing to the partition function as 
T + T, from below. At T,, the number of states which contribute 
to the partition function would grow indefinitely, and viewed 
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from a world of hadrons, there would be a Hagedorn limiting 
12 temperature . As the limiting temperature was approached for 

any finite N, the effects of multi-meson interactions would 
become important, and the large N expansion applied to the 
hadronic world, would break down. Above T,, the thermodynamic 
potential would become infinite when measured in terms of the 
thermodynamic potential below T,. As T approached T, from above, 
at some temperature singular long distance interactions among 
quarks would become sufficiently large, and the perturbation 
expansion might break down. Another possibility is that the 
perturbation expansion remains valid in the quark-gluon world, 
but there is a first order phase transition generated by the 
possibility that hadrons might exist as a resonance gas at much 
lower free energy below T,. 

It seems that as a necessary consequence of these arguments, 
there are two different ways to implement the large N expansion 
for the thermodynamic potential. In one method of expansion, a 
hadronic gas results. In another method of expansion, a quark- 
gluon plasma results. At some temperature T, a confinement- 
deconfinement phase transition results, and this phase 
transition is just the result of one of these two methods of 
expansion either being appropriate or inappropriate to the 
temperature range of interest, that is, it is a consequence of 
the breakdown of one form of the large N expansion in favor of 
the other. The next three sections will be devoted to finding a 
relation between these two methods of expansion, and determining 
when one or the other method fails to give a correct answer for 
the thermodynamic potential. 
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Section 3: The Thermodynamic Potential in Large N 

In this section, we shall derive a perturbation expansion 
for the thermodynamic potential. This expansion yields the 
ordinary Feynman graph expansion for the thermodynamic 
potential. It would be appropriate if there existed some range 
of temperature for which the system was an unconfined quark 
plasma. Although this result is the standard starting point for 
many analysis of the properties of a quark-gluon plasma in four 
space-time dimensions, it is never applicable in two space time 
dimensions. We shall then indicate how a formal resummation of 
the Feynman graphs may generate the thermodynamic potential in 
the confining phase, although a detailed derivation of this 
result is left for the next two sections. This result re- 
expresses the thermodynamic potential as a sum over bound quarks 
in mesons. We also indicate how the confining and the 
deconfining phase of any system may be understood as the result 
of the breakdown of one form or the other of the series 
expansion for the thermodynamic potential. 

The thermodynamic potential is 

D q - 1 ln Tr e -6H 
6V = - 6 In l [dAd$dT] e s (6) 

where A is the gluon field, $ and T are the quark fields, and S 
is the Euclidian action confined in a semi-infinite four volume 

BV, 

s =-I: dt lV d3x {- + gm2 F;'F~~ - ?($.a - y-A + m)*] (7) 

with periodic (anti-periodic) boundary conditions on the gluon 
(fermion) fields in the time direction. The gluon 
chromoelectromagnetic field strength tensor is 

F" = a'A:-avA1 + fabcA:Az a (8) 

The path integral representation of Eq. 6 is not a 
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convenient form for our purposes. A direct expansion in terms 
of vacuum graphs leads to graphs with complicated combinatoric 
factors. A more useful form is found by differentiating the 
thermodynamic potential with respect to os, 

g2a d --R=-< s das ; FiVF;v > 

For simplicity we have ignored the contribution from the ghost 

loop, whose sole effect in the light cone gauge is to cancel the 
lowest order diagram involving a single gluon loop. The notation 
<O> for any operator 0 is 

<o> = I dAd+dTl 0 es / I [dAd$dv] es (10) 

The cho ce of integration constant is a little tricky since 
in two dimensions, the limit a s + 0 is singular. We shall take 
the integration constant for os + -. In this limit, the masses 
of all bound states diverge, unless the quarks have precisely 
zero mass which is a case we do not consider. The integration 
constant is fixed by requiring that the thermodynamic potential 
at infinite coupling vanishes. 

In two space-time dimensions, it is always possible to 
choose an axial gauge for which the gluon interactions vanish. 
In an axial gauge, there is only one field A and fabcAbAc is 
zero. We shall always work in such a gauge. The derivative of 
the thermodynamic potential may therefore be expressed in terms 
of only the full gluon propagator. 

This expression for the derivative of the thermodynamic 
potential is best expressed in momentum space. With the free 
inverse gluon propagator as 

D;AjUY(q) = i{q2g'" -q'q"] (12) 

and the full propagator as 
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the thermodynamic potential is given as 

d -1 a 
SK 

cl:-;!3 zq 1 2% D-1 U-J 
0 (2X) (0) (9) 

[ D,,,,(q)+ (2;'2 g-2 6 ('j(q) <AII><AY>] (14) 

(13) 

This contribution is a vacuum Feynman 
4. 

The leading order contribution to 
given by the graphs shown in Fig. 5. 
give a contribution of order N in the 

graph and is shown in Fig. 

the l/N expansion for n is 
These planar diagrams 

deconfined phase. A 
heuristic way to avoid this problem in two dimensional QCD is to 
re-sum the gluon insertions, and express this contribution in 
terms of the fermion propagator computed to leading order in the 
large N limit. The quark propagator is shown in Fig. 6 in 
terms of the irreducible quark self-energy kernel. The 
contributions of leading order in N to the self energy kernel E, 
which we shall call E (,) and which yield the propagator SC,) are 
shown in Fig. 7. The contribution to the thermodynamic 
potential is expressed in terms of SC,) as shown in Fig. 8. 
This graph may be thought of as vanishing since the two fermion 
lines which appear correspond to the dressed propagation of 
quarks. If the self-energy insertion is computed with an infra- 
red regulator, the self-energy insertion leads to infinite mass 
quarks, and there would be no contribution to the diagram of 
Fig. 8. The problem with this heuristic argument is that it is 
not gauge invariant. In suitable gauges, the self-energy 
insertion is perfectly finite. Also, a direct evaluation in 
light cone gauge shows that although there may be an infinite 
self-energy insertion with some choices of infra-red 
regulation, the singularity may be removed by a shift of the 
fermion momentum. Hence the high momentum contribution of the 
loop integrals for Fig. 8 cancels this mass singularity. 
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In the next section, we shall show that this contribution 
truly vanishes in the confined phase, by considering the 
partition function properly evaluated as a sum over gauge 
invariant states. At this point in our classification of 
diagrams, we shall assume that this is in fact the case, and 
consider the next leading contributions in the large N limit. 
It is these contributions which are of zero order in N as N 
approaches infinity, and should therefore give the resonance sum 
in the confined phase. As we shall see later, these graphs sum 
up to give the contributions shown in Fig. 9. In this figure, 
T is the connected scattering matrix element for quark-antiquark 
scattering. In the next section, we shall explicitly see how in 
this diagram, scattering of quarks and anti-quarks sum up to 
give a sum over finite energy color singlet meson states, as 
shown in Fig.10. It is plausible that this might occur given 
the structure of Fig. 9. The scatterings generate bound state 
poles, with residues which are the bound state wavefunctions. 
Again, there are several problems with this heuristic argument. 
One problem is that these wavefunctions are evaluated with 
Euclidian momentum, and it is not obvious how to analytically 
continue this momentum to Minkowski space. It is also not clear 
at this stage how the sum over frequencies gets converted to 
continuous integrations over momenta of the bound state 
wavefunctions. Finally, note that although the graphs of Fig. 
9 (b)-(c) have the same structure as those of Fig. 9 (a), we 
are forced to write these as separate contributions because of 
the combinatoric factors. It will also be shown in the next 
section, that this mysterious combination is precisely what is 
required to yield the derivative of n, with the mysterious 
factors arising from differentiating the meson mass with respect 
to as. 

It is not yet clear how there might be two different methods 
of summing the thermodynamic potential in four dimensions, both 
of which are valid in large N, for the confined and unconfined 
phases of the theory. We shall show in Sets. 4-5 that the 
thermodynamic potential expressed as a sum over bound states, or 
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as a sum over the constituent quark and gluon states may be 

realized as two different limits of the same formal Feynman 
diagram expansion. We derive the Feynman rules of the system 
with quarks and gluons as internal lines, taking into account 
the fact that in calculating Tr e -6H , we sum over only those 
states of the bulk matter which are color (13) singlets. In the 
thermodynamic limit, this constraint becomes irrelevant and we 
recover the usual Feynman rules (14) . This limit reproduces the 
correct partition function of the system in the deconfined 
phase. This calculation is no longer valid in the confined 
phase, and we believe that this is signalled by uncurable 
infrared divergences of the individual Feynman graphs. Instead, 
we compute the amplitude by taking the N + - limit before taking 
the thermodynamic limit. This limit is expected to produce the 
correct result in the confined phase, since the spectrum of 
bound states is independent of N in the large N limit, and all 
the interaction terms vanish in the same limit. We shall show 
in Sets. 4-5 that in this same limit, the Feynman graphs 
expressed in terms of the quark and gluon lines may be 
rearranged to reproduce the thermodynamic potential as a sum 
over bound states. This calculation is no longer valid in the 
deconfined phase, and we expect the breakdown to be signalled by 
a divergence in the sum over bound states, as implied by a 
Hagedorn spectrum of bound states. 

We now explain in some detail how these two limits differ in 
the actual computation of the thermodynamic potential. In order 
to impose the color singlet constraint on the bulk system, we 
must first expand the partition function in terms of the usual 
connected and disconnected Feynman diagrams, use the rules of 
Sec. 4 to project out the color singlet part of each diagram. 
and then try to exponentiate the answer. Let us analyze the 
contribution represented in Fig. 1 la. Although the 
contribution shown in Fig. lla may be shown to vanish due to 
the color singlet constraint, the contribution from disconnected 
diagrams shown in Fig. llb do not vanish if the number of such 
diagrams are of the order of N or larger than N. In fact, the 
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color singlet constraint becomes irrelevant when the number of 
such diagrams is large compared to N. Since the contribution 
shown in Fig. lla is proportional to its volume, and the major 
contribution in the expansion ex = Z x"/n! comes from n - x for 
large x, we may conclude that the contribution to the 
exponential associated with the contribution shown in Fig. lla 

will come from diagrams of the form shown in Fig. llb with the 
total number of disconnected diagrams of order BVA', A being the 
typical mass scale of the theory. As a result, in the 
thermodynamic limit for a fixed N, we may ignore the color 
singlet constraint, and the leading contribution to the 
partition function is given by the exponential of Fig. lla. 

In computing the thermodynamic potential in the confining 
phase, however, we take the N + m limit before the thermodynamic 
limit. Then using the color singlet constraint, we may show 
that the contribution to the partition function from any diagram 
of the form of Fig. llb is at most of order unity, and not of 
order N. As a result, the thermodynamic potential is of order 
unity. As we shall show in the next section, the thermodynamic 
potential calculated in this way may also be identified with 
that calculated from the sum over the mesonic bound states of 
the large N limit. 

Physically, these results may be understood as follows: 
Fig. 10 gives the dominant contribution to the thermodynamic 
potential if the thermal media provides enough shielding to 
produce quarks which propagate freely for times large compared 
to the typical particle interaction times. This happens in the 
deconfined phase. In the confined phase, a quark cannot 
propagate freely unless it is paired with an anti-quark of 
opposite charge. Hence only that part of Fig. llb which 
corresponds to the propagation of a color singlet bound state of 
a quark anti-quark pair contributes to the partition function. 
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Section 4 Color singlet projection 

In this section, we shall continue the discussion of the 
thermodynamic potential. We shall carefully implement the color 

singlet constraint on the states in the partition function, by 
expressing the thermodynamic potential as a sum over color 
singlet multiquark states. We then derive the Feynman rules for 
evaluating the thermodynamic potential. In the next section we 
shall show how these Feynman rules give an expression for the 
thermodynamic potential in terms of the bound states. 

If we allow the states In> appearing in 

,-@VQ = E n <nl e -6HI n> (15) 

to be arbitrary multi-quark states, then the Feynman rules for 
evaluating 0 are the standard ones. The Feynman graphs are 
evaluated with Euclidian metric, and energies are replaced by 
Matsubara frequencies with the discrete values (2p+l)n/B for 
fermions and 2pn/f3 for bosons. 

We shall, however restrict the sum in Eq. 15 to color 
singlet states. As we shall soon see, the Feynman rules for 
evaluating quantities with this constraint are somewhat 

the different than those without the constraint. We accomplish 
by making use of the color singlet color singlet constraint 

projection operator(13). 
generated by the group e 
function is 

Let U represent a color rotation 
lement g. The color singlet part ition 

e-8Vn = I [dgl ~~ <plemBH U(g)lp> (16) 

Cdgl is the properly normalized Weyl measure which projects out 
color singlet states. 

For any element of a group g it is always possible to find 
another element g' such that 

u(g’)u(g)u(g’-‘) = u,(g) (17) 
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is diagonal. Since H commutes with all the color generators, 
he have 

E 
P 

<pjemBH U(g)1 P> = Ep ud(g)u(g')l P> 
q E P (18) 

If Qi denote the diagonal generators of the U(N) gauge group, 
then we have 

Tr emBH U,(g) = Tr e -BH ,iaiQi (19) 

where ai are the parameters characterizing the invariance class 
of the group element g. Eq. 16 may therefore be written as 

,-%VQ = J [da] Tr ,-BH eiaiQi (20) 

Since all the diagonal generators commute with H and with 
themselves, the integrand of Eq. 20 may be evaluated by 
replacing H with an effective Hamiltonian 

H' = H - iaiQi (2’) 

Let us choose for convenience the generator Qi in such a way 
that all its diagonal entries except the i'th one is zero. The 
i'th fermion state is defined as the column vector whose only 
non-vanishing entry is the i'th row. The i'th anti-fermion is 
the conjugate of the i'th fermion.. The [i,j] gluon state is 
the state with the same quantum numbers as the combination of 
the i'th fermion and j'th anti-fermion. The operator rj ajQj 
gives cii/6, -aj/8, and (ai -aj)/6 acting on the i'th fermion, 
j'th anti-fermion, and (i-j)'th gluons states respectively. The 
Feynman rules for the color singlet partition function of Eq. 
19 are now easy to derive. Note first that the extra term 
iZjajQj/6 is quadratic in the fields, and therefore contributes 
only to the propagators of the various fields and not their 
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vertices. The propagators differ from the usual propagators in 
Euclidian momentum space in the following way. For the i'th 
fermion propagator carrying momentum k, the discrete variable 

k", which takes the values (2n+l)ir/6, is replaced by k" - ai/ 
everywhere in the propagator. Similarly, the [i- jl'th gluon 
carrying momentum k ' is modified by making the substitution 
k"+ko-(ai-aj)/6 everywhere in the propagator. 

With these Feynman rules, we now analyze the thermodynamic 
potential given by Eq. 19. We first analyze the diagrams of 
order N shown in Fig. 5. Consider the lowest order 
contribution represented in Fig. 2. This contribution may be 
written as 

nA = (2n/B)2 EkO 1,2=(2n1,2+l)n,B 1 dkldk2 I(ky-ai/B)2+kf+m21-1 

[(k” 2-aj/6)2+kz+m2]-' f(k+ti /6,k;-ajIB) (22) 

where f denotes the contribution from the fermion numerators and 
the gluon propagators. Ths equation may be re-written as 

nA : Icdtldt2 ((tl-ai/6) +kl+m } 2 2 2 -'ut 2-aj/6)2+k;+m2}-' 

f(tl-oi/8,t2-aj/6) Btl ; 6 cot12 - $1 
Bt2 ; 6 cot 12 - $1 

(23) 

where the contour in the complex t plane is taken for each t 
integration as is shown in Fig. 12. Defining new integration 
variables as 

ti q tl-ai/ (2’+) 

2 q t2-aj’8 
(25) 

Eq . 23 becomes 
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nA = I, dt,dt2 t;+;2+m2 tz+;;+m2 f(tl,t2) $ cot &$l - 5 + 4'3 
1 

Et2 
$ cot I;! - 

a 
; + TJ] (26) 

where we have dropped the primes from the new variables tVl and 
t12. For the part of the contour integration in the tl plane 
where Im t 1 > 0, we expand 

6t l-n+ai l-ei(%tl+ai) 

cotI 2 ] = -i l+ei(6tl+ai) 
= -i I1-ei(%tl+ai)l 

E- m=O (-l)m eim(6ti+ai) (27) 

The sum is convergent for Im tl > 0. For Im t.1 < 0, we expand as 

%t l-TT+Lli 
l-e-i(%tl+ai) 

cotI 2 1-i = i (l-e-i(%tl+ai) 
l+e 

-i(%tl+ai) 

Em m=O (-,)me-im(%ti+ai) (28) 

The cotangent term involving t2 may be expanded in entirely the 
same manner. The part of the integrand which depends upon 6 
and ai, i q 1, ..*, N is therefore a sum of terms of the form 

(29) 

where -01 < ml < - and -m < m2 < m. The traces over the fermion 
loops require that we must sum over the i and j independently 
from 1 - N. ( This is most easily seen using the double line 
representation for the gluon propagator. ) The result of this 
summation is to sum over i and j on the terms shown in Eq. 29. 
Since all of the ca dependence is in this term, the rest of the 
integrand may be taken outside the a integral, and we have to 
evaluate the expression 

(30) 
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If we had not imposed the color singlet constraint, there 
would not have been an (I integral in Eq. 29, and all of the o's 

would be set to. zero. The summations in Eq. 30 would then 

yield N2. Combining one factor of N into the factor of g2 which 
multiplies Fig. 2, this diagram would be of order N. We shall 

show that, 

I[dal x e iml"i Z e lrnzaj = Imll 6 
ml ,-m2 

+ N26 
m,,O &m2,0 (31) 

For m, and m2 not both zero, this diagram is of l/N and is non- 

leading compared to the magnitude of the color singlet meson 
contributions. On the other hand, the contribution for m, = m2 
= 0 has no dependence on 6. This contribution affects only 

the vacuum energy and may be ignored for our purposes. 
The contribution from higher order diagrams with one fermion 

loop as given by Fig. 8, may be similarly shown to be non-leading 
except for the vacuum contribution. This is done by using the 
result, discussed in Appendix A, 

I [da] zil eimlail ci2 eim2ai2 . . . . . C. e im,ai 
lr 

r = 0, r odd 
(32) 

= E Imll lm31 . . . . . . 
permutations Im r-l' 'rn 

Iv-m2 

6 . . . . 
m3$-m4 

6 
mr-l' r -m , r even (33) 

if none of the mk ,s vanishes. If some of the mk are zero, then 
the sum over each of the corresponding G ,s gives a factor of N. 
The contribution of the remaining terms may be carried out using 
Eqs. 32-33. The summation is over all pairings from the set of 
ml, ,.** mr. Since only the term with all of the m's set to 
zero, which is a vacuum contribution, is non-vanishing in the 
large N limit, we conclude that the graphs of Fig. 8 are 
non-leading relative to the meson contribution. 

We now discuss the contribution associated with two fermion 
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loops as shown in Fig. 9. The contribution from these graphs 
is at most of order unity. A typical graph with two fermion 
lines contributing is shown in Fig. 13. The contribution may 
be written as 

E po I dp I [da] E E 
ky *'* k; 

EN ii-1 . ..Ey 
r 

=1 

f(k~+ail/%,'**k~+uir/%,kl'...kr,pO,p) 
(34) 

where k denotes the spatial component of the loop momentum. 
Note that some of the color indices in Fig. 13 are 

constrained to be equal due to group theory factors. Also in 
the fermion propagators, ait/% is added to the momenta ki but 
is subtracted from the momenta PO-k:. This is because the 
momentum p-k, flows along the arrow while the momenta kL flows 
against the arrow. As a result, aie and ky always appear in the 
combination ki + ait/%. We may now express Eq. 34 as 

I [da1 zpol dn Ic (i&dt$ f(t,,.**tr,kl,"*kr,po,p) 

r 
'9.~1 

N 
'ifi -1 

%tQ-T+Uip. 
cott 2 I (35) 

We may expand the cotangent as we did in the previous 
analysis. Since to start with, the contribution was of order 
unity, the only way we may get a contribution of order unity 
after the (L integrals is to set mi=O in each expansion. This is 
equivalent to setting the cotangent to unity in Eq. 35, or in 
other words, replacing the summation over the Matsubara 
frequencies ky by continuous integration over Euclidian momenta. 
Only for the momenta p" must a discrete frequency sum remain. 

We have to this point concentrated only on connected 
diagrams. We must also treat disconnected diagrams since it is 
the expression for Z, which contains connected as well as 
disconnected diagrams, and not In Z (=-%Vn), which contains only 
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connected diagrams, over which the a integrations are directly 
performed. We shall now discuss how the disconnected diagrams 
sum up when a global color singlet constraint is included. To 
study this, we must first expand 2 in terms of connected and 
disconnected diagrams, do the G integrals, and then sum up the 
result. We shall show that the total contribution from the 
connected and the disconnected diagrams which survive the a 

S integrations may be written as e , where S is the sum of the 
connected diagrams integrated over a and a new class of diagrams 
which we shall discuss below. 

First consider disconnected diagrams of the type shown in 
Fig. 14. Contributions from these diagrams may be analyzed in 
the same way as the contributions from Fig. 8. We may bring 
the contribution from the disconnected diagrams into the form 

Ic nedtedkQ I [da] F(t) n,[c;,=, cot{ (36) 

The cotangent functions may be expanded as in Eqs. (27) and 
(28). The integrand is given by a sum of terms of the form 

I [da] e 
imq,aie 

ll=l 
I 

This contribution may be analyzed using Eq. 32 and 33. The 
largest contribution to Eq. 37 comes when all the m's are zero. 
Combined with the explicit powers of l/N in the coupling 
constant, this gives a contribution of order N2. This is simply 
the square of the O(N) vacuum energy term, since this 
contribution is obtained simply by replacing all the internal 
energy sums in Fig. 14 by continuous integrals. The next order 
contribution is of order unity, and is found by replacing all of 
the m's except two by zero. Let mi and mj be the only two 
nonzero components. This contribution may be evaluated using 
Eq. 31. There are two cases. If both mi and mj come from the 
same bubble in Fig. 14, then the contribution factorizes into a 
product of O(N) vacuum energy diagram and an 0(1/N) contribution 
to the partition function from the connected diagram represented 
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in Fig. 8. This is therefore not a new contribution to In Z, 
and is already included in the disconnected diagrams which sum 
up to yield the clustered expression for Z. On the other hand 
if mi and mj come from the different bubbles in Fig. 14, the 
contribution may no longer be interpreted as a higher order term 
in the expansion of eln ', and must be included in In Z as a new 
contribution. Diagrammatically, we shall represent these 
contributions as disconnected bubbles with one loop from each 
bubble connected by a dotted line to represent which of the m's 
are taken to be non-zero. A typical example is shown in' Fig. 
15. 

When we consider higher order diagrams containing more 
disconnected bubbles, we may expect to get more new terms in the 
expression for In Z. We shall now show that this does not 
happen. Let us consider a set of disconnected diagrams. The 
contribution from these diagrams may be expressed as in Eq. 36. 

The leading contribution is of order Np which comes from setting 
all the m's to zero in Eq. 37. This term may be trivially 
identified with the p'th power of the O(N) contribution to the 
vacuum energy .in the p'th order of expansion of e In Z . The 
next order contribution is of order N P-2 , which is obtained from 
setting two of the m's to be non-zero. If these two m's come 
from the same bubble, the contribution may be identified with 
the pruduct of the O(Np-' ) contribution from the (p-l)'th power 
of the vacuum contribution and the 0(1/N) contribution to In Z 
from Fig. 8. If the two m's come from different bubbles, the 
contribution is identified with the product of the O(N P-21 

contribution from the (p-2)'th power of the vacuum energy and 
the O(1) contribution from the graphs of Fig. 15. 

The only potentially new contribution to In Z may come from 
graphs with four or more m's non-zero. The only non-factorizing 
contribution (which may not be expressed as products of terms 
already in In Z) come from terms of the form shown in Fig 16, 

where the dotted lines connect the loops for which the m's are 
non-zero. The m's at the two ends of a dotted line are paired 
according to Eq. 33. We lose four powers of N from each of 
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these graphs since four of the m's are non-vanishing. As a 
result, the contribution from Fig. 6a is of order l/N2 and that 
of Fig. 6b is of order l/N. These graphes do not therefore 
contribute to In Z to order unity. 

Finally, we want to demonstrate that the combinatoric 
factors associated with each graph works out to correctly 
exponentiate the graphs. We shall see that this works in an 
example, and not construct a full proof. This example consists 
of graphs with 2p disconnected bubbles, and we want to pick up 
the terms where each of the disconnected bubbles is paired with 
another bubble, thus giving the p'th power of the graphs shown 
in Fig. 15. The combinatoric factor desired of this graph is 
l/p!, whereas the original graph has a factor of 1/2p!. There 
are however (2p!)/ {p!2p) ways of pairing 2p objects, hence the 
net combinatoric factor is l/(p!2p}. Absorbing the factor of 
l/2 in the definition of the graphs shown in Fig. 15, we see 
that we indeed get the correct combinatorial factor needed for 
exponentiation. Also, by using the structure of Eq. 33, we see 
that the contribution from the term with 2p disconnected bubbles 
may indeed be identified with the p'th power of the contribution 
with two disconnected bubbles, because of the factorized form of 
the right hand side of Eq. 33. 

This indicates the proof that the total contribution to In 2 
exponentiates, with the terms in the exponential containing the 
vacuum energy terms, contributions of the form shown in Fig. 
13 with all the koV s being integrated over a continuous range 
from -- to -, while the p" is summed over the discrete Matsubara 
frequencies 2nn/B and contributions of the form shown 
in Fig. 15. In actual practice, we shall however evaluate as d/das 
n instead of 0. This differential may be written as 

a s d/da, R = - 4 J [da] E n <,le-%H+iajQJ (4g2)-'Tr FPVF'" In> 
(38) 

In other words, it is the trace of the gluon propagator plus 
an additional contribution of the form shown in Fig. 17 d 



coming from the one point gluon function. The numerator of Eq. 
38 may be analyzed exactly in the .same way as that of Z. It may 
be expressed as a product of Z and terms of the form shown in 
Fig. 17. In these graphs, the gluon line with a cross 
represents the propagator whose trace is being computed. 
Although in evaluating the Feynman diagrams, the crossed gluon 
propagator may be treated as an ordinary gluon propagator, 
distinguishing this gluon from the others helps us keep track of 
combinatoric factors. The graphs of Fig. 17 a have the same 
topology as those of Fig. 8 and do not contribute to order 
unity in the large N limit, except for trivial vacuum energy 
terms. Graphs in Figs. 17b-d have the same topological 
structure as those of Fig. 9, and may be analyzed in a similar 
way. As a result of the color singlet projection, all of the 
internal frequency sums are replaced by continuous integrals, 
while the overall energy carried by the quark-anti-quark pair in 
the color singlet channel is still summed over discrete 
frequencies. The graph of Fig. 17e comes from the non- 
factorizability of the color singlet projected disconnected 
vacuum diagrams, and must be included in our analysis. 
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Section 5 

In this section, we shall analyze the sum of the diagrams 
shown in Figs. 17 b-e. To do this, we express the contribution 
from Figs. 17c-d as in Fig. 18a while half of the contribution 
from Fig. 17 b, together with another graph where the direction 
of the arrow in the lower fermion loop is reversed, may be 
identified to Fig. 18 b and c with the addition of some 
disconnected diagrams. Here, G is the full four fermion Green's 
function, including the self-energy insertions on the external 
legs. Trace over all the color indices are performed directly 
in Fig.17, and the factors of N obtained from these traces are 
combined with the factors of N in the coupling constants to give 
terms of order unity. Hence G does not carry any color indices, 
and is independent of N when expressed as a function of as. E 
denotes the one particle irreducible self- energy insertion on 
the fermion line, and S -1 is the full fermion propagator. We 
shall discuss the disconnected diagrams at the end of this 
section. 

The 1PI fermion self-energy part involving the crossed gluon 
in Fig.l8(b) and (c) may be identified with -a,(aS -‘/aus). Thus 
we may write the contribution to II s d/das In Z from Figs. 18 
a-b as 

4.E 
2 PO 

I c$ id2kE id2qE 
(2n)2 (2n)2 GE(P'qE' E 

k ) asd/das { I(p,qE,kE) 

-K(p,qE,kE) } (39) 

where the subscript E refers to the Euclidian momentum and L 
is the length of the box. and 

d2qE, and the factor of i -1 
The factors of i multiplying d2kg 

multiplying 6(qg-kE) is due to 
euclidean nature of these momenta, and will disappear once we 
Wick rotate the integrals to the Minkowski space. Here 

K = w2 
1 6(qE-kE) &p-q,) g-'(qE) (40) 
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and 

I Z -43 yU X y" i D(;$dd (41) 

is the kernel of the Bethe-Salpeter equation. The first Y 
matrix in this expression operates on the fermon line, and the 
second y matrix operates on the anti-fermion. D(o) Nv(k) is the 
free propagator for a gluon of momentum k. 

The Greens function G(p,q,k) may be expressed as 

1 
G(p,q,k) = i En 'y,(p,q) yl* 

p2-M2+ic n n 
(p,k) (42) 

where M n is the mass of the n'th bound state, Yn is the 
corresponding wavefunction, 

Y,(p,q) = I d2x d2y e 
-ip*xe-i(p-q)*y <n,plT(Y+(x)Y(y))lO> 

(43) 

* 
and 'Y n is the complex conjugate of a similar expression with 
the time ordering replaced by anti-time ordering. The 
wavefunctions (Yn satisfy the normalization condition (15) 

-i I 
d2k d2q 

(2n)2 (2x12 
Y;(p,q) asd/das [K(p,q,k)-I(p,q,k)} 

Yn(p,k) q asd/das (44) 

In Eq. 39, the integrals over q and k as well as over the 
internal momenta in G are in Euclidian space. We shall however 
Wick rotate the integration contour to convert them into 
Minkowski space integrals. We may then drop the subscripts E 
from Eq. 39. Substituting for G from Eq. 42 and using Eq. 
44, we may write Eq. 39 as 

2 

LE I gJ1 En cas 2 1 

2 PO S p2-M2+ie = n 
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dpl - $ d/des Zn Zp, I r ln(-p2+M2-ic) n (45) 

Since Eq. 39 is the expression for asd/das In Z, we see that 
In Z may be identified as 

L 
- 7 'n 'p, 1 glln(-p2+M2-' ) n lE (46) 

which is exactly the result we expect for a gas of free 
particles of masses Mn ( n = 1 ** m ) 

Let us now consider the contribution from the disconnected 
diagrams. In the original set of graphs, there were a set of 
disconnected diagrams of the form shown in Fig. 17 e. While 
identifying the set of graphs shown in Fig. 17 b to those of 
Fig. 18b and c, we get another set of disconnected diagrams. 
These two sets do not cancel. However, there may be other 
contributions to the disconnected diagrams which are potentially 
ambiguous. This is due to the fact that in deriving Eq. 45 
from Eq. 39, we had to interchange the summation over an 
infinite number of bound states with integration over the 
relative momenta q and k. Let us for example note that C 
satisfies the integral equation 

G(p,q,k) = J 
d2a, d2Q2 

(2nI2 (2n)2 
K(p,q,Qj) I(p,kl,fi2) G(p,e2,k) 

+K(p,q,fil) (47) 

while each of the Y's satisfies the homogeneous equation 

yn(p,q,k) = 1 
d2Q, d2!22 
(2n)2 (21112 

K(p,q,lll) I(P,el,E2) yn(P,a29k) 

(48) 

As a result, if in Eq. 47 we substitute for G using Eq. 42, 
interchange the limits zn and I d2Q2 , the left and right hand 
sides are equal only up to the addition of the disconnected 
piece K. 

Since, at present, we do not have an unambiguous method to 
extract the disconnected piece that emerges while interchanging 
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the two limits, we are unable to show that the total 
contribution from disconnected diagrams vanishes. Since the 
contributions to 1nZ from disconnected diagrams are, however, 
proportional to L2, instead of L, as is the case for the 
connected diagrams, we believe that the contribution is 
unphysical and must cancel in the end. 

Before concluding this section, we shall give another 
derivation of the equivalence of Eq. 39 and Eq. 45 for two 
dimensional QCD. Let 11 and I2 denote the contributions from 
Fig. 18a-b respectively before performing the dp, integration 
and the frequency sum. Ignoring the contribution from'the 
disconnected pieces, we may write, 

I,:$ d2q 
(2nI2 

G(p,q,q) S-‘b-q) S-‘(q) 

I,=-+ d2q 

(2n)2 

dS-l(q) s -1 
G(p,q,q)(as das (P-q) 

dS-'(p-q) 
+ as da, 

(49) 

(50) 

We shall carry out the rest of our discussion in the light 
cone gauge. We first summarize the main results of two 
dimensional QCD in the light cone gauge. In this gauge the 
Green's function G satisfies the integral equation 

G(p,q,k) q (2~)~ S(p-q)S(q) 6(2+q-k) 

- 4jp2 S(q)S(p-q) f 
d2t, 

(2r)2 
D(q-fil) G(p,fil,k) 

- s(q) s(p-q) 4g12 D(q-k) S(k) S(p-k) 

+ 16g’ 4 S(q) S(P-q)! - - 
d2Q, d2Q2 
(2n)2 (2nI2 

D(q-al) G(P,~I,E~) D(k,E2) 

S(k) S(p-k) (51) 



-32- 

These equations may be diagrammatically represented as shown 
in Fig. 19. Here D(k) denotes th.e gluon propagator carrying 
momentum k, and g'=gJN. Also, in this gauge we may treat the 
fermion and the gluon fields as one component objects, with the 
following Feynman rules: 

Gluon propagator: D(o) (q)=iP ' 
(q-l2 

where P denotes the principal value prescription. 

(52) 

Fermion propagator: s(o) (P) = 
ip- 

(2p+p--m2+i.e) 
(53) 

and 

Gluon-fermion vertex: -2ig N l/2 = -2ig' (54) 

The superscript (01 in Eqs. 52-53 refers to the fact that the 
propagators S(O) and D(O) are the tree level fermion and gluon 
propagators. The full fermion propagator may be written as 

S(p) q 

ip- 

(2p+p--m2-p-l(p)+ie) 

where to leading order in the large N limit 

(55) 

The Bethe-Salpeter wavefunction satisfies an integral equation 

Y,(P,S) = -4gq2i S(p-q)S(q) 1(;z;2 P{ ' 
(k--q-j2 

} Y,(p,k) (57) 

We define 

@,(p,q-) = I dq+ yn(P,q) (58) 

Integrating both sides of Eq. 57 with respect to q- we get 
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{2p+- $ - M2 ] bn(p,q-) = - $ I:- 
p--q- 

dk- P{ ' 
(k--q-)21 

qn(p,k-) (59) 

where 

Since on is the wavefunction of the bound state n with mass 
it must be an eigenstate of the P+ operator with eigenvalue 

Equation 59 may then be written as 

P-i $+ M2 j@,(P,q-) - $ 
12 

p--q- 
I:- dk- P[ (p-;q-)2 }en(p,q-) 

= M; o,(p,q-1 (61) 

The integral operator on the left hand side of Eqn. 61 may be 
identified with the mass operator M2 for the bound state. 

We shall now evaluate the integrals 11 and 12 given by Eqns. 
49-50. We express 11 as 

1 
II = 7 En I (92 { s-'(P-q)s-l(q) 'y,(p,q) p2iM2 n 'y'(p,q) ) 

n 
1 = 2 En Idk- P{ *;b,k-)} 

(62) 

upon using Eq. 57. This result is however ambiguous up to 
the addition of disconnected diagrams. For example, if we had 

used Eq. 51 for G first, and then used Eq. 42 to express G as 

a sum over bound state wavefunctions, we would have been left 
with a disconnected diagram. This is the same ambiguity that 
was mentioned before. 

We analyze 12 by using Eq. 51 and ignoring the disconnected 
piece. This gives 

I2 = -; as d2 
1(&2i s(q) 

dS-'(p-q) 
da + S(P-q) 

S 
ds;;;q' } S(q)S(p-q) 
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D(q-Cl) G(p,fil,a2) D(q-a,)] 

(63) 

Note that the quantity D(O) entering this equation is formally 
infinite, but as we shall show, this term drops out of our final 

expression for the thermodynamic potential. Using the explicit 

forms for S and E, and performing the q+ integral in Eq. 63, we 

set 

M2 }-2 ( -$ + ' } 
q- p--q- p--q- 

K(q-a,) G(~,a,,fi~) K(q-e2)} 
(64) 

where 

I'(q) = -4gf2 D(q) (65) 

On the other hand, integrating both sides of Eq. 51 over k+ and 
q+ and setting q- = k-, we obtain 

i dq+dk+ G(p,qrk) Iq-=k- q (-in)2 ( 2p+- M2 - M2 lw2 
q- p--q- 

I'(q-El) G(p,e,,e2) I'(q-Q2) 1 (66) 

where disconnected contributions have again been ignored. Using 

Eqs. 64 and 66, 12 may be expressed as 

I2 = -+ 452 ;;’ I ;- + ,-;,- 1 I dq+dk+ G(p,q,k) Ikmrq- 

= 2 
2 1 En @,(P,q-) ,,;,, +P,q-) 

n (67) 

We therefore find that 

1,+12 - 2; En J dq- { 
32 

- ; ( $ + ,g,- ) mn(P,q-) 
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g2 + ; / dk- an(p,k-) } --!- @*(P,q) ~242 n 
n 

1 = -2R En I dq- @;(P,q-) 
1 

M2 p2-M2 82 3 { p- 1 O,(P*q-) 

1 = 2R En I dq- --- ’ +P,q-) i 82 $ In {-p2+M2+iE) ] @,(p,q-) 
(68) 

Using the completeness of the functions an and the 
normalization condition derived from Eq.(3.8) of Ref.15, 

I dq- o;(P,q-) *,(p,q-j = -6,,P-n (69) 

we get 

d 1,+12 q -cLs - 
das 

En In [-P2+M2+ia} 

The net contribution to us d - In Z is given by 
das 

o I 9 In {-P2+M2+is} 

We finally find therefore 

In Z q -L 2 zpo J 2n &E n In [-P2+ME+ie} 

(70) 

(71) 

(72) 

which is precisely the expected result for a set of 
non-interacting scalar mesons. 

In the integration with respect to g2 which gives Eq. 64, 
there is a g independent integration constant which has been 
implicitly chosen to be zero. This constant is specified by 
properly reproducing the strong coupling result which must 
consist of the contribution of the lowest mass bound state 
of the theory. This contribution is properly included 
in the result of Eq. 72. 
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Section 6. Summary and conclusion 

In this paper we have analyzed the thermodynamics of QCD in 
the large N limit. In this limit, the contribution to the 
thermodynamic potential in the confining and the deconfining 
phase are of order unity and N2 respectively. We show how these 
two results may be realized as two different limits of the same 
formal Feynman diagram expansion, which is obtained by 
restricting the sum over states in the partition function to be 
over gawe invariant states only. The result for the 
thermodynamic potential in the deconfining phase, which we expect 
to be given by the asymptotically free perturbation theory, is 
obtained if we take the thermodynamic limit before taking the 
large N limit. On the other hand, the result for the 
thermodynamic potential in the confining phase is obtained if in 
the same perturbation expansion, we take the large N limit 
before taking the thermodynamic limit, and formally resum the 
perturbation expansion. We believe that the confining- 
deconfining phase transition corresponds to the breakdown of one 
or the other limit, as we approach the phase transition 
temperature from different directions. 

Although we have focussed our attention on the two 
dimensional 't Hooft model, we believe that the general results 
mentioned above are valid even for four dimensional QCD in the 
large N limit. The two dimensional QCD, however, has some 
special features which we do not expect to generalize to four 
dimensions. In the two dimensional theory, asymptotically free 
perturbation theory is never a valid expansion. This is 
signalled by severe infrared divergences which occur in the 
perturbation expansion if we take the thermodynamic limit before 
taking the large N limit. On the other hand, if we take the 
large N limit before taking the thermodynamic limit, we get the 
thermodynamic potential as a sum over meson bound states. The 
sum is finite all finite values of temperature, and hence is 
expected to give the correct answer for the thermodynamic 
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potential at all temperatures. This is presumably not the case 
for four dimensional QCD in the large N limit. The 
asymptptically free perturbation expansion suffers from infrared 
divergences only at some high order in perturbation theory, and 
is expected to give the correct answer for the thermodynamic 
potential at sufficiently high temperature. Also, the 
thermodynamic potential in the confining phase, expressed as a 
sum over meson bound states, may not be well defined for all 
values of temperature, due to the existence of a Hagedorn 
limiting temperature. As a result, different methods of 
expansion, as mentioned before, must be used to calculate the 
thermodynamic potential in different ranges of temperature. 
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Appendix A 

We want to calculate the quantity 

0-l r [ dgl Trf gml Trf gm2 a.. Trf gmr (A.‘) 

in an SU(N) gauge group. Here g denotes an element of SU(N), 

and mt,mz, --am 
E': 

r are integers satisfying Zi=,mi SO and 

irllmil < N. Trf denotes the trace in the fundamental 
representation, [dg] is th e Weyl measure for SU(N) and CI is the 
volume of SU(N). The operation n-'l [dg] counts the number of 
singlet representations contained in the integrand. 

Our conjecture is that the result of Eq. A.1 when none of 
the m's are zero is given as 

0 if r is odd 

E all pairings lmll Im31 "'I%--11 6ml+m2,0 6m3+m4,0 --a 

6 
mr-l+mrt 0 if r is even (A.21 

If some of the m's are zero, the corresponding trace gives a 
factor of N, and the remaining contribution may be evaluated 
using Eq. A.2. 

The verification of this conjecture is begun by 
parameterizing g by its N eigenvalues tl,"',tN Satisfying 
Ilr=jti =I. tit.? are related to the parameters ai's introduced 
in the text through the relation ti=elei. Eq. A.1 may therefore 
be written as 

n-‘.fCdtl d&, 

n-'J[dt] [& --** & exp {El;, ms 
Iti 

The exponenial in Eq. A.3 may be 

1 as Er= 

written 

(A.3) 

as 
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dL em{ z~=, as t? I 

We now evaluate Eq. A.3 using a result derived in Ref. 
16. For our purposes, the result may be stated as follows. If 
G(t) is a function of t with the expansion 

G(t) = c;=-m Ant” (A.5) 

then 

a-‘f[dtl II;=, G(ti) = det D (A.61 

where 

Dke = Ak-e 

In our case 

G(t) q exp i Ez., ast 
mS 

I 

(A.7) 

(A.8) 

The non-zero entries in D are for k,e satisfying 

k-e : Cscg ms (A.9) 

where 0 is any subset of the set {l,**,r}. The corresponding 
value of Dka is Bsce as. D also has non-zero entries at k-e = 
E scQnsms where n s are positive integers larger than unity. 
These terms will contain more than one power of some of the a's 
and will not contribute to Eq. A.3 after setting all the a's to 
zero. 

Now define the matrix B as 

D=I+B (A.10) 
B has the same structure as D with the diagonal identity 
elements removed. We may therefore write 
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Det D z exp Tr In {I + B} = exp { Z;=, (-I)"+' Tr Bn j n 

n+l m = Ep=o I z;=, Tr B" }' $! (A.11) 

According to Eq. A.3, the coefficient of the lIzZlar term in 

Eq . A.11 gives the result for Eq. A.I. In evaluating Eq. 

A.11, we must find the diagonal element of B". A typical 
diagonal element of B" has the form 

B. B. ***B. 
iii2 1213 lnil 

The non-zero values in Eq. A.12 are obtained if 

(A. 12) 

i -i 
1 2 = EscQlms 

i2-i3 = EsCo2 m, 

in-i 
1 

= E 
SC0 ms (A.13) 

n 

where 13 1' "'0, are subsets of the set [l,*.,rj. We also want 

them to be mutually exclusive in order to avoid two or more 
powers of a single as. The corresponding contribution to Eq. 
A.12 is given by 

$1 L3Eas~ (A. 14) 

Eq . A.13 yields 

EL E SCQQ ms :o (A.151 

The diagonal elements of B" are therefore sums of products of 
asIs. A particular product in the sum contains those as's whose 
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corresponding mS 's add up to zero. 
Let PI, "'Pk be all possible subsets (not necessarily 

mutually exclusive) of the set (1,.**,r) such that 

E scPJ, m, q O for all e q 1, **',k 

Then, 

‘::I n 
(-I)"+' Tr Bn q 

EL G(Rt,lms; s = PEG nScpeas 

(A.16) 

(f4.17) 

where Re is the number of elements in the set Pk. 
G(RQ,{ms;sCPQ), by definition, is the coefficient of RsEPQ as in 
the expansion of the left hand side of Eq.CA.17). It is 
evaluated by setting all the as's outside the set PQ to zero, 
and counting the coefficient of ~~~~ as on the left hand side 
of Eq. A.17. Our conjecture is tha: 

G q 0 for all R, > 2 

G : lmll 6ml,-m2 for RQ : 2 (A. 18) 

We shall soon describe how to verify this conjecture. But 
first we shall show that Eq. A.18 leads to Eq. A.2. To see 
this, note that due to Eq.(A.lB), the only way a particular as 
may appear in Eq. A.17 is that its corresponding m, has a 
negative counterpart. In other words, the set {ml,"*,mr} must 
be of the form {ml,-ml,m3, -m3,**-m,-l, -m,-I}. We find upon 
using Eqs. A.l7-A.18 that 

':=l n 
(-I)"+;, *n = [lm~l~~a~+lm~l~~a~+~“lm,_~lar~~ar] (A.19) 

The coefficients of al*-*a, on the right hand side of Eq. A.11 
are therefore given by 

lmll Im31*--lmr-ll (A.20) 
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which proves Eq. A.2. 
We shall now illustrate how we verify the conjecture of Eq. 

A.18. Let us denote the elements of the set {m,, s cPQ} by 

Ml? - ‘MR, and the corresponding a’s by A1,**APQ. The quantity G 
is evaluated by determining the coefficient of II ii,As on the left 
hand side of Eq. A.17. Since this may be done by setting all the 
elements of the set {al”a,] to zero, except the ones belonging 
the set Pi, we see that G depends only on FiQ and the set {Ml,-* 

41~1, but not on r or the other members of the set ml,“mr. As 
a result, we may evaluate G(r,{ml, “m,]) by setting Pa = (ml,.. 

%-I, and then computing G(Rf,[Ml, **MRe}) for arbitrary Ra and 

MI, - ‘MR~ by setting r = Rg, and the set {ml,“m,} to be {Ml,.* 

MR& 
In order to calculate G(r,{ml,“mr]), we need to evaluate 

the coefficient of rIr-,ai in Eq. A.12 and then add them up with 
a weight factor of (-lln/n. The sets GL in Eq. A.13 must the 
satisfy 

u;=l OQ = {ml,***m,} (A.211 

Each term in Eq. A.12 is therfore associated with a 
particular division of a set of r objects into n boxes, with 
each box containing at least one object. The permutations of 
the objects inside a box 0~ are irrelevant, whereas the 
permutations of the boxes BP. are relevant. In other words, the 
contributions to Eq. A. 12 is different if instead of Eq. A.13, 
we have 

il-i2 = z 
SCQ2 ms 

i2-i3 = XsEe,ms 

. 

i,-il = ZsCe 
r 

m, (A.22) 
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For a particular choice of the sets Ol,****O, and a fixed 
ordering of the sets, all the differences il-i2 , **"i,-il are 
fixed, but il is still arbitrary. Let the matrix B be of 
dimension NxN where N is a number much larger than Iall, 
""lrnrl. Then the number of possible values of il is given by N 
- max(ie-ik), where max (ii- ik) denote the maximum difference 
batween any two it's in the set (il,***,i,) determined by Eq. 
A.22. 

The coefficient of N in G is therefore determined from the 
number of ways r objects may be divided into n distinguishible 
boxes, each box containing at least one object. If In(r) 
denotes this number, then the coefficient of N in G is given by 

‘:=I n 
GIP+'In(r) (A.23) 

I, may be evaluated by using the following recursion relation, 

I,(r) = nr - Eiii t;, * n-j,(r) (A.24) 

11 = 1 (A.25) 

Eq . A.24 reflects the fact that the total number of ways to put 
r objects in n ordered boxes with each box containing at least 
one object is the difference between the total number of ways to 
put r objects in n boxes and the total number of ways to put r 
objects in n boxes with at least one box containing no object. 

We have evaluated I, using Eqs. A.24-25 and verified that 

Eq . A.23 vanishes for r < 20. The evaluation of the N 
independent part is more difficult. At present we know of no 
other way to calculate it other than to explicitly generate all 
permutations, calculate maX(ik-il) for all of them, and add the 
permutations up with the proper coefficients. We have done this 
for r < 8, with randomly generated ml,"',mr satisfying E as = 
0. The answer is zero in all cases except for r = 2, in which 
case it is Iall. Our conjecture is therefore verified for r < 8. 
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Figures: 

Fig. 1 The ideal gas contribution to the thermodynamic 
potential for a) quarks and b) gluons. 

Fig. 2 The first order contribution to the thermodynamic 
potential. 

Fig. 3 Insertion of fermion bubbles in the first order 
correction to the thermodynamic potential. 

Fig. 4 The thermodynamic potential in terms of the ~full 
gluon propagator. 

Fig. 5 The leading contribution to the thermodyanamic 
potentail in the large N limit. 

Fig. 6 The quark propagator in terms of the fermion self 
energy kernel. 

Fig. 7 The leading order contributions to C 
Fig. 8 The leading order contribution to Q expressed in 

terms of S, 
Fig. 9 The contribution to n of order 1 in the large N 

expansion. T is the quark-antiquark scattering matrix in this 
expression. 

Fig. 10 A sum over meson states for the thermodynamic 
potential. 

Fig. 11 Unclustered vacuum graphs which have singlet 
projections and may contribute to a. 

Fig. 12 The contour integration for Eqn. 23. 
Fig. 13 A typical graph involving two fermion loops which 

contributes to the thermodynamic potential. 
Fig. 14 One type of disconnected diagram which contributes 

to the color singlet partition function. 
Fig. 15 A typical diagram which is a residue of a 

disconnected diagram after a color singlet projection is taken. 
Fig. 16 New, non-factorizing contributions to the color 

singlet partition ~function arising from disconnected vacuum 
graphs. 

Fig. 17 Some disconnected vacuum graphs. 
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Fig. 18 The leading order graphs which in the large N limit 
yield a resonance sum. 

Fig. 19 The Bethe-Salpeter equation for G. 
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